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Abstract A numerical simulation of the fully developed forced convection in a circular duct
partly filled with a fluid saturated porous medium is presented. The Brinkman-Forchheimer-
extended Darcy equation is used to describe the fluid flow in the porous region. The energy
equation for the porous region accounts for the effect of thermal dispersion. The dependence of
the Nusselt number on a number of pavameters, such as the Reynolds number, the Darcy
number, the Forchheimer coefficient, as well as the thickness of the porous region is investigated.
The numerical results obtained in this research are in agreement with published experimental
data.

Nomenclature
C = dimensionless experimental constantin Py = Prandtl number, oy
X . .
representation of the effect of radial q" = wall heat flux, W/m?

thermal dispersion

. . . r dimensionless radial coordinate, /r,
¢ = specific heat capacity of fluid, J/(kg'K)

radial coordinate, m

cp = Forchheimer coefficient r, = radius of the circular duct, m
Da = Darcy number, K/r,2 I'ine = radius of the clear fluid region, m
d, = average particle diameter in the porous  Reyq= particle Reynolds number based on
region, m mean velocity, = Undp
F = scaled Forchheimer coefficient, f{‘lc/f aG Re, = particle Reynolds number based on
Gro
G = applied pressure gradient, —dp/dx, Pa/m characteristic velocity, Gir)d
ki = fluid thermal conductivity, W/mK Riy = dimensionless radius of the clear fluid
ky, = stagnant thermal conductivity of region, rin/r,
porous medium, W/mK T = dimensionless temperature, T‘ lT
ks = thermal conductivity of solid phase, T = fluid temperature, K el
W/mK T, = mean flow temperature, ? f GTrdr, K
K = permeability, m* T, = wall temperature, K ™
Nu = Nusselt number, k((TﬁTm) u = dimensionless velocity, ‘éfr”g
D = intrinsic average pressure, Pa iy = filtration (seepage) velocity, ms™
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Unpit

U = dimensionless mean ﬂorw velocity, g4 € = porosity of the porous region

Gm = mean flow velocity, r% fﬁfdf, ms—! ¥ = Ezn:;zllzt) ]c/garacterlzmg ViIScosity ratio,
- . . 0 < N . 1

X = streamwise Coordmate, m we = ﬂuld dynamlc VlSCOSlty, kgm 1 S 1

Lefr = effective viscosity in the Brinkman
term of the momentum equation for the

Greek letters porous region, kgm™'s™!
B = adjustable coefficient in the stress jump ~ pr = fluid density, kg/m®
boundary condition v¢ = fluid kinematic viscosity

1. Introduction

Considerable attention has recently been paid to the fluid flow and heat transfer
in composite systems that are composed of regions filled either with a
homogeneous fluid or with a fluid saturated porous medium. This interest is
due to the wide use of these systems in engineering applications such as solar
receiver devices, thermal insulation, heat exchangers, energy storage units,
ceramic processing and catalytic reactors (Amiri and Vafai, 1994).

Studies in this field gradually progress towards complex models. At the
beginning of these studies, a simple Darcy equation was used to describe the
fluid flow in a porous medium. However, for high-speed flows it was found that
that there is a deviation from the classical linear correlation between the
pressure gradient and the filtration velocity, which is given by the Darcy
equation. Then the so-called Darcy-Forchheimer equation, which includes a
quadratic drag term to account for the deviation from linearity, was introduced.
Further development of the model made by Brinkman was stimulated by a
desire to impose the non-slip boundary condition at the solid wall (Nield and
Bejan, 1999). It has recently become very popular to utilize the Brinkman-
Forchheimer-Darcy equation, which accounts for both non-linear effects and
viscous effects near the boundaries. Now this model is accepted and widely
used (Vafai and Tien, 1981; Vafai and Thiyagaraja, 1987; Vafai and Kim, 1990;
Amiri et al., 1995; Amiri and Vafai, 1998; Hsieh and Lu, 1998; Nield and Bejan,
1999). Moreover, it has been found that thermal dispersion effects play an
important role in forced convection in porous media (Amiri and Vafai, 1994;
Plumb, 1983; Plumb and Whitaker, 1988a; 1988b; Hong and Tien, 1987; Hsu
and Cheng, 1990). The models used to describe the transport phenomena in
porous media are getting more and more sophisticated. The more complex the
model is, the more difficult it is to get an accurate general theoretical solution.
Poulikakos and Kazmierczak (1987) presented analytical solutions for fully
developed forced convection in parallel plate channels and circular ducts partly
filled with porous media. They utilized the Brinkman flow model and neglected
thermal dispersion in the radial and transverse directions. Vafai and Kim (1989)
obtained a boundary layer solution for a fully developed forced convection
problem in a parallel plate channel filled with a Brinkman-Forchheimer porous
medium. Nield et al. (1996) performed a theoretical analysis and obtained a
solution for the same problem without utilizing the boundary layer
approximation. Neither Vafai and Kim (1989) nor Nield et al. (1996) considered
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HFF the effect of thermal dispersion. In this paper the Brinkman-Forchheimer-Darcy
10,5 equation is used as the momentum equation for the porous region and the
radial thermal dispersion in the porous medium is accounted for in the energy
equation for the porous region. Because of the geometrical configuration
considered in this study and the presence of a non-linear term in the momentum
equation, it is impossible to obtain an exact analytical solution for this problem.
490 Thus, a numerical solution is adopted. The two cases of a constant heat flux
and a constant wall temperature are investigated.

2. Problem formulation

The geometrical configuration considered in this research is displayed in
Figure 1. Forced convection flow occurs in an infinite horizontal circular duct
whose wall is subject to a uniform heat flux or a constant temperature.
Assuming hydrodynamically and thermally fully developed flow, the
governing equations for this problem are:

dp <d2af 1diy
Hf

_r e s ) [ <F <
A W2 fdf) 0 Osrstn (1)

dp <d2ﬁf 1df1f> B PICF y

—&‘f'/ieff T Kuf—wuf—o e <T<1, (2)
_oT PT 10T .
PfoUfg =k (ﬁ ?E) 0<r <rjx (3)
T 10 fid, 0T .
Pfoufg =I5 [(km + Ck¢ Prpfuff p> F It ST <1, (4)

where C is the dimensionless experimental constant, c; is the specific heat
capacity of the fluid, cr is the Forchheimer coefficient, d, is the average particle

* g” or T. = const
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Figure 1.
Schematic diagram of A 1 ¥ ¥

the problem -




diameter, K is the permeability of the porous medium, k¢ is the thermal Effect of thermal

conductivity of the fluid, k,,, is the stagnant thermal conductivity of the porous
medium, r,, is the radius of the circular duct, r;,, is the radius of the clear fluid
region, T is the temperature, G; is the filtration velocity, p.s is the effective
viscosity of the porous medium, py is the fluid viscosity, and ps is the fluid
density.

The Forchheimer coefficient, cg, and the permeability, K, can be calculated
utilizing formulas that are based on the results of experimental measurements
carried out by Ergun (1952):

o = 1.75 (5)
/1502572
g3d?
= : 2 (6)
150(1 — ¢)

where ¢ is the porosity of the porous region.
The stagnant thermal conductivity of the porous medium, k,,, is calculated
as:

ke = ek + (1 — £)k (7)

where k4 1s the thermal conductivity of solid phase.

Equations (1) and (2) are the momentum equations for the clear fluid and
porous regions, respectively. In the porous region, the Brinkman-Forchheimer-
extended Darcy equation is used. Equations (3) and (4) are the energy equations
for the clear fluid and porous regions, respectively. The longitudinal heat
conduction and longitudinal thermal dispersion are both neglected, which is
justified if the Peclet number is large enough. Isotropy and homogeneity of the
porous medium and local thermodynamic equilibrium in the porous region are
assumed.

2.1 Constant heat flux
For the constant heat flux situation, equations (1)-(4) must be solved subject to
the following boundary conditions:
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oT
— /" 1
. =4 (10)

T=r,

[

where (3 is the dimensionless adjustable coefficient describing the jump in
shear stress at the interface between the clear fluid and the porous medium
492 (Ochoa-Tapia and Whitaker, 1995a; 1995b).
The governing equations (1)-(4) and boundary conditions (8)-(10) for the
constant heat flux case can be recast into the dimensionless form by
introducing the following dimensionless parameters:

u:ufuf, :Umm, T:ﬂ, rzi, (11a)
Gro? Gry? T — Ty o
dp et V2 PECF To* K
o= =) s meg o

where Da is the Darcy number, F is the scaled Forchheimer coefficient, and G is
the applied pressure gradient. N

In equation (11a), U, is the mean velocity and T, is the mean temperature of
the flow. They are defined as:

- 2 [
Um = ro—z/urdr (12)
0
Th =—= / uTrdr (13)
16“Un

0

For the constant heat flux (according to Bejan (1984)), the First Law of
Thermodynamics results in the following relationship:

oT dTw 2 ('

9 _%m_2 9 14
ox  dx 1o peciUpy, (14)
The dimensionless governing equations can now be presented as:
d>u 1du
S o= <r <Ry 1
dr2+rdr 0 O=r= Rin (15)

d®u 1du 1
1+~ <dr2+r ) Dau Fu"=0 Ry <r<1 (16)



u d*T 14T
—ENUZW—F;a 0 <r < Riy (17)

u 1d [/knm dT
__ e <r <
UNu P ka + C-Pr-Repu ) dr] Ry <r<1 (18)
where Nu is the Nusselt number defined by equation (19) below:
n
Nu— D Zrd” (19)
kK ke(Tw — Tn)

Re, in equatlon (18) is the Reynolds number based on the characteristic velocity
scale, Gr,%/p, given by equation (20). An alternative would be to define the
Reynolds number based on the mean flow velocity. In that case, however, the
Reynolds number would depend on the solution, therefore using a
characteristic velocity scale is preferable.
Gr,?
%),

Re, = ( (20)

vt

where v41s the kinematic viscosity of the fluid.
The dimensionless form of boundary conditions given by equations (8)-(10) is:

du dT
dr r=0 dr r=0
du du 8
U0 = Uo7 g R0 g, 0 vDa e, (220
Kk dT . dT
TL:RWO B T‘r:Ri‘“*O (kf b Repu) dr,_ Rint+0 S dr =R —0 (#2b)
u}rzl =0 T’r:l =0 <23)

In the energy equations (17) and (18), the Nusselt number is present as a
parameter. Therefore, one more equation is needed to close this problem. This
additional equation is given by the compatibility condition obtained from the

definition of T, (Bejan, 1984):
1
U
/ uTrdr = 5
0

(24)
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2.2 Constant wall temperature

The dimensional governing equations and boundary conditions for this case
are similar to those for the isoflux case (equations (1)-(4) and (8)-(10)). The
difference is that the second equation in equation (10) is replaced by:

T, =Tv (25)

The dimensionless governing equations and boundary conditions for the flow
velocity are the same as for the isoflux case and are given by equations (15),
(16), (21), (22a) and_(23). According to Bejan (1984), a pertinent relationship
between — and ——
ox ox
following equation:

for the isothermal boundary condition is given by the

0T _1dTn_p2 (26)

This results in the following dimensionless energy equations for the clear fluid
and porous regions, respectively:

u d*T 1dT
__ [ E <r<R;
oWl =5+ 0<r1 < Rin (27)
u 1d [ /ky dT
_ _ [ —_ . . — e <r <
UNuT Cdr ka +C-Pr Repu>r dr} Rt <r <1 (28)

The dimensionless boundary conditions for the temperature are also the same
as those for the isoflux wall case, which are given by equations (21), (22b) and
(23). Since the Nusselt number is present in the energy equations (27) and (28)
as an unknown parameter, an additional equation is needed again to close the
problem formulation. This additional equation follows from the definition of
the Nusselt number:

kyn dT

Nu = —Zk—fa .

(29)

3. Numerical procedure

Since there is a non-linear term in the momentum equation for the porous
region, the equations are first written in the finite-difference form while the
Newton iteration method is used to obtain the velocity field. Once the velocity
distribution is found, it is easy to obtain the temperature distribution. For the



isoflux wall, T /Nu can be computed from equations (15)-(18) and (21)-(23). The Effect of thermal

Nusselt number can then be obtained by substituting the velocity distribution
and T /Nu into equation (24).

In the case of the isothermal wall, it is important to avoid a trivial solution
for the temperature. The same method as in Poulikakos and Kazmierczak
(1987) and Nield et al. (1996) is utilized here. First, a value of the Nusselt number
is guessed and equation (29) is utilized to obtain an expression for the first
interior node near the wall. The temperature distribution for this Nusselt
number is computed beginning from the wall and proceeding towards the duct
center. Then the Newton iteration is used to adjust the Nusselt number and the
process is repeated until the boundary condition at the center of the duct is
satisfied.

4. Results and discussion

4.1 Constant heat flux

Figure 2 shows how the Nusselt number changes in relation to the Reynolds
number, Rey, according to these computations and shows a comparison of the
numerical results with the experimental results obtained by Quinton and
Storrow (1956). Since the experimental results given by Quinton and Storrow
(1956) are reported in terms of Reg, the numerical results obtained here are also
given in terms of Rey, where Req is the Reynolds number based on the mean
flow velocity and is connected with previously utilized Re,, by the following
correlation:

Req = URe, (30)
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Figure 2.
Dependence of the
Nusselt number on the
particle Reynolds
number for the case of
an isoflux wall




HFF
10,5

496

The parameters utilized in the computation of Figirure 2 are the same as in
Quinton and Storrow (1956), Da = 3.3895 x 107°, F = 513.7467 x Re,,
kn/ke = 1.2075,Pr = 0.7, R;,: = 0.0, = 0.37,and v = ﬁ For the constant C, two
different values are utilized, C = 0.08 and C = 0.1 (0.1 is the value suggested in
Wakao and Kaguei (1982)). When the Reynolds number is very small (of the
order of unity), the Nusselt number does not depend on the Reynolds number
and has an asymptotic value of 9.31. There is some difference between the
numerical results and the experimental data for small Reynolds numbers. This
is because longitudinal thermal dispersion is neglected in the computations,
which can only be done for large Peclet numbers (Pe = Pr - Re). If the Reynolds
number is larger than 100, the Nusselt number increases rapidly with an
increase in the Reynolds number and the numerical results agree well with the
experimental data, especially in the case of C = 0.08.

Figure 3(a) displays the velocity distributions between the duct center and
the wall for different values of the scaled Forchheimer coefficient, F, and the
radius of the clear fluid region, R;,. As expected, an increase in the
Forchheimer coefficient causes a decrease in the velocity distribution. This is
because an increase in the Forchheimer coefficient means an increase in the
resistance to the flow. It is also noticeable that when R;; is 0.25 there is a far-
field region in the porous medium where the velocity does not change along the
radius. This far-field region is located between the two momentum boundary
layers, one of which is located near the solid wall and the other near the porous
medium/clear fluid interface (Kuznetsov, 1996, 1998). When increasing R;,
from 0.25 to 0.80, the velocity in the porous region stays nearly the same, but
the velocity in the clear fluid region increases considerably. Since the presence
of the porous medium heavily affects the fluid flow in the duct, it can be
expected that it will also affect the heat transfer. Figure 3(b) displays the
temperature distributions from the duct center to the wall. There is a kink at
the interface, which in this case is caused by thermal dispersion in the porous
medium. According to the second equation in (22b), thermal dispersion results
in a discontinuity in the temperature gradient at the interface, even when
stagnant thermal conductivity of the porous medium, k,,, is equal to the fluid
thermal conductivity, ky, as was assumed in computing of Figure 3(b).

The effect of the position of the clear fluid/porous medium interface on the
Nusselt number is illustrated in Figure 4 for different values of the Darcy
number and the Forchheimer coefficient. The case when R;,,; = 0 corresponds to
the duct being completely filled with the porous medium. When most of the
duct is filled with the porous medium (R;,; < 0.05), the Nusselt number has
nearly no dependence on R;,.. When the duct is completely filled with clear
fluid region, i.e. R;y; = 1, the Nusselt number approaches 4.36, which coincides
with the value given in Bejan (1984). Increasing the Darcy number causes an
increase in the Nusselt number while increasing the Forchheimer coefficient
causes a decrease in the Nusselt number. This is because a large Darcy number
corresponds to a larger permeability of the porous medium, which translates to
a larger filtration velocity, while a larger Forchheimer coefficient means a
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stronger resistance to the flow, which translates to a small filtration velocity.
When the Darcy number is of the order of 10 or less and the Forchheimer
coefficient is of the order of 10° or greater, the Nusselt number does not
monotonically change with the thickness of the clear fluid region, but has a
minimum value. This effect was first shown and explained in Poulikakos and
Kazmierczak (1987).
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Figure 3.

Velocity and temperature
distributions for different
values of the Darcy
number and Forchheimer
coefficient for the case of
an isoflux wall
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Figure 4.

Dependence of the
Nusselt number on the
thickness of the porous
medium for the case of
an isoflux wall

Figure 5.
Dependence of the
Nusselt number on the
particle Reynolds
number for the case of
an isothermal wall
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4.2 Constant wall temperature

Figure 5 depicts the change of the Nusselt number with the Reynolds number.
To compare the numerical simulations with the experimental data of Verschoor
and Schuit (1949), the parameter values used in this figure are the same as in
Verschoor and Schuit (1949): Da = 1867 x 10% F = 10627 x Re,,
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k/ks = 5481, Pr = 0.7, Rine = 0.0, € = 0.412, and v = . The results are similar
to those for the isoflux case. The numerical results slightly overpredict the rate
of increase of the Nusselt number when the Reynolds number is increased.

Figure 6 depicts the temperature distributions in the duct for different values
of the Forchheimer coefficient for the isothermal wall. The parameters utilized
to compute Figure 6 are the same as those used to compute Figure 3 for the
1soflux wall case. The velocity distributions corresponding to the temperature
distributions shown in Figure 6 are exactly the same as those for the isoflux
wall case, which are shown in Figure 3(a). This is because the velocity
distributions do not depend on the boundary condition for the temperature.

The dependence of the Nusselt number on the position of the clear fluid/
porous medium interface is shown in Figure 7. The Nusselt number has the
same trend as in the isoflux wall case (Figure 4), with the only difference being
that the value of the Nusselt number in this case is slightly smaller than that in
the isoflux case when computing for the same parameter values. When the
whole duct is filled with a clear fluid, the numerically computed value of the
Nusselt number is 3.65, which is very close to the value (3.66) given in Bejan
(1984).

5. Conclusions

A numerical simulation of the forced convection in a circular duct partly filled
with a Brinkman-Forchheimer porous medium is presented. The thermal
dispersion effect is analyzed. Two kinds of thermal boundary conditions
(isoflux wall and isothermal wall) are investigated. The trend of the Nusselt
number variation with the parameters, such as the Darcy number, the scaled
Forchheimer coefficient, the interface position, and the Reynolds number, is
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Figure 6.

Velocity and temperature
distributions for different
values of the Darcy
number and Forchheimer
coefficient for the case of
an isothermal wall
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Figure 7.

Dependence of the
Nusselt number on the
thickness of the porous
medium for the case of
an isothermal wall
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similar for both the isoflux and isothermal boundaries. The Nusselt number
increases with an increase of the Reynolds number and does not change
monotonically when the Darcy number is of the order of 10~ or less and the
Forchheimer coefficient is of the order of 10° or greater. Increasing the Darcy
number or decreasing the Forchheimer coefficient causes an increase in the
Nusselt number. When the Darcy number is very small, the Forchheimer
coefficient has only a weak effect on the Nusselt number.
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